# NWERC 2011 Solutions to the problems 

The Jury<br>Jacobs University Bremen

## Statistics

| problem | correct/submissions | fastest |
| :--- | :---: | :---: |
| E - Please, go first | $62 / 106$ | 25 |
| B - Bird Tree | $44 / 83$ | 34 |
| C - Move to Front | $33 / 171$ | 20 |
| A - Binomial Coefficients | $18 / 135$ | 22 |
| H - Tichu | $13 / 40$ | 115 |
| I - Tracking RFIDs | $7 / 31$ | 88 |
| G - Smoking Gun | $3 / 63$ | 134 |
| D - Piece it Together | $3 / 39$ | 260 |
| J - Train delay | $1 / 9$ | 279 |
| F - Pool construction | $0 / 2$ | N/A |

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person


## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person
- All his friends line up in front of him: Ab9AAbbC22


## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person
- All his friends line up in front of him: Ab9AAbbC22
- Then the last person that isn't his friend: Ab9AAbbC22

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person
- All his friends line up in front of him: Ab9AAbbC22
- Then the last person that isn't his friend: Ab9AAbbC22
- And his friends (in this case none)


## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person
- All his friends line up in front of him: Ab9AAbbC22
- Then the last person that isn't his friend: Ab9AAbbC22
- And his friends (in this case none)
- Then the next: Ab9AAbbC22

Statistics
Problem E Problem B

Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person
- All his friends line up in front of him: Ab9AAbbC22
- Then the last person that isn't his friend: Ab9AAbbC22
- And his friends (in this case none)
- Then the next: Ab9AAbbC22
- And his friends: A9AAbbbC22

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F

## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person
- All his friends line up in front of him: Ab9AAbbC22
- Then the last person that isn't his friend: Ab9AAbbC22
- And his friends (in this case none)
- Then the next: Ab9AAbbC22
- And his friends: A9AAbbbC22
- And so on. Final order: 9AAAbbbC22

Statistics
Problem E

## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person
- All his friends line up in front of him: Ab9AAbbC22
- Then the last person that isn't his friend: Ab9AAbbC22
- And his friends (in this case none)
- Then the next: Ab9AAbbC22
- And his friends: A9AAbbbC22
- And so on. Final order: 9AAAbbbC22
- Now you know the final ordering, count the saved time


## E - Please, go first

- Sample case 2: Ab9AAb2bC2
- The last person in the line will stay the last person
- All his friends line up in front of him: Ab9AAbbC22
- Then the last person that isn't his friend: Ab9AAbbC22
- And his friends (in this case none)
- Then the next: Ab9AAbbC22
- And his friends: A9AAbbbC22
- And so on. Final order: 9AAAbbbC22
- Now you know the final ordering, count the saved time
- Time saved by $X$ is number of positions that the last $X$ moved forward times the number of Xs


## E - Please, go first (source code)

```
#include <iostream>
#include <vector>
#include <string>
#include <cctype>
using namespace std;
int main () {
    int runs;
    cin >> runs;
    while (runs--) {
        int n;
        string s;
        cin >> n >> s;
            vector<int> cnt(128,0);
        for (int i=0; i<n; i++) cnt[s[i]]++;
        int res = 0, num_used = 0;
        vector<bool> used(128,false);
        for (int i=n-1; i>=0; i--) {
            if (!used[s[i]]) {
                    res += (num_used-(n-1-i))*cnt[s[i]];
                num_used += cnt[s[i]];
                used[s[i]] = true;
            }
        }
        cout << 5 * res << endl;
    }
    return 0;
}

\section*{B - Bird tree}
- Root: \(1 / 1\), left: \(1 /(T+1)\), right: \(1+1 / T\)
- If \(a / b<1\), go left, else go right

\section*{B - Bird tree}
- Root: \(1 / 1\), left: \(1 /(T+1)\), right: \(1+1 / T\)
- If \(a / b<1\), go left, else go right
- If left, replace \(a / b \rightarrow(b / a)-1=(b-a) / a\)

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem !
Problem D
Problem J
Problem F
The end

\section*{B - Bird tree}
- Root: \(1 / 1\), left: \(1 /(T+1)\), right: \(1+1 / T\)
- If \(a / b<1\), go left, else go right
- If left, replace \(a / b \rightarrow(b / a)-1=(b-a) / a\)
- If right, replace \(a / b \rightarrow 1 /(a / b-1)=b /(a-b)\)

\section*{B - Bird tree}
- Root: \(1 / 1\), left: \(1 /(T+1)\), right: \(1+1 / T\)
- If \(a / b<1\), go left, else go right
- If left, replace \(a / b \rightarrow(b / a)-1=(b-a) / a\)
- If right, replace \(a / b \rightarrow 1 /(a / b-1)=b /(a-b)\)
- Proceed with first step

\section*{B - Bird tree}
- Root: \(1 / 1\), left: \(1 /(T+1)\), right: \(1+1 / T\)
- If \(a / b<1\), go left, else go right
- If left, replace \(a / b \rightarrow(b / a)-1=(b-a) / a\)
- If right, replace \(a / b \rightarrow 1 /(a / b-1)=b /(a-b)\)
- Proceed with first step
- Stop once you encounter \(a / b=1 / 1\)

\section*{B - Bird tree (source code)}
```

\#include <iostream>
\#include <string>
Solutions
using namespace std;
int main () {
int runs;
cin>>runs;
while (runs--) {
int a,b;
char c;
cin >> a >> c >> b;
while (a>1 || b>1) {
if (a<b) {
cout << "L";
b -= a;
}
else {
cout << "R";
a == b;
}
swap (a,b);
}
cout << endl;
}
return 0;
}

## C - Movie collection

- Note, since $m, r=100000$, you cannot update the stack
in $\mathcal{O}(m)$ time


## C - Movie collection

- Note, since $m, r=100000$, you cannot update the stack in $\mathcal{O}(m)$ time
- Therefore you need some smart data structure to store information


## C - Movie collection

- Note, since $m, r=100000$, you cannot update the stack in $\mathcal{O}(m)$ time
- Therefore you need some smart data structure to store information
- Binary indexed tree/Fenwick tree does the job in $\mathcal{O}(\log (m))$ time
- At every step, take movie $x$ and put it back on $-1,-2,-3, \ldots$


## C - Movie collection

Note that this is also $O\left(n^{2}\right)$ :

```
for (int j = 0; j < r; j++) {
    movie = sc.nextInt();
    index = movies.index0f(movie);
    System.out.print("" + (m - index - 1) + " ");
    movies.removeElementAt(index);
    movies.add(movie);
}
```

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## A - Binomial coefficients (1)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$


## A - Binomial coefficients (1)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Only look for solutions with $k \leq n / 2$ and count twice if necessary


## A - Binomial coefficients (1)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Only look for solutions with $k \leq n / 2$ and count twice if necessary
- Loop over $k$ from 0 to $\binom{2 k}{k}>x$


## A - Binomial coefficients (1)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Only look for solutions with $k \leq n / 2$ and count twice if necessary
- Loop over $k$ from 0 to $\binom{2 k}{k}>x$
- Binary search for $n$

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## A - Binomial coefficients (1)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Only look for solutions with $k \leq n / 2$ and count twice if necessary
- Loop over $k$ from 0 to $\binom{2 k}{k}>x$
- Binary search for $n$
- Be really careful with overflows!

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## A - Binomial coefficients (2)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$


## A - Binomial coefficients (2)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Again, only look for solutions with $k \leq n / 2$ and count twice if necessary


## A - Binomial coefficients (2)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Again, only look for solutions with $k \leq n / 2$ and count twice if necessary
- For $k=1$, solution is $\binom{x}{1}$


## A - Binomial coefficients (2)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Again, only look for solutions with $k \leq n / 2$ and count twice if necessary
- For $k=1$, solution is $\binom{x}{1}$

Statistics Problem E

- For $k=2$, solve $x=\binom{n}{2}=\frac{1}{2} n(n-1)$


## A - Binomial coefficients (2)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Again, only look for solutions with $k \leq n / 2$ and count twice if necessary
- For $k=1$, solution is $\binom{x}{1}$

Statistics Problem E

- For $k=2$, solve $x=\binom{n}{2}=\frac{1}{2} n(n-1)$
- For $k \geq 3$, loop over $n$ until $\binom{n}{k}>x$


## A - Binomial coefficients (2)

- Find $n, k$ such that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=x$
- Again, only look for solutions with $k \leq n / 2$ and count twice if necessary
- For $k=1$, solution is $\binom{x}{1}$

Statistics Problem E

- For $k=2$, solve $x=\binom{n}{2}=\frac{1}{2} n(n-1)$
- For $k \geq 3$, loop over $n$ until $\binom{n}{k}>x$
- Again, be really careful with overflows!


## H - Tichu (1)

- Greedy solution


## H - Tichu (1)

- Greedy solution
- Brute force over two straights


## H - Tichu (1)

- Greedy solution
- Brute force over two straights
- Greedily take quads, full houses, trips, pair and singletons from the remaining cards


## H - Tichu (1)

- Greedy solution
- Brute force over two straights
- Greedily take quads, full houses, trips, pair and singletons from the remaining cards
- One tricky case: 2 full houses is better than 1 quads +2 trips

Statistics
Problem E Problem B

## H - Tichu (2)

- Bitmask dynamic programming solution


## H - Tichu (2)

- Bitmask dynamic programming solution
- For each subset $\left(2^{13}=8192\right)$ determine whether it is a valid combination


## H - Tichu (2)

- Bitmask dynamic programming solution
- For each subset $\left(2^{13}=8192\right)$ determine whether it is a valid combination
- DP step: best $[x]=\operatorname{best}[x \&!y]+1$ with $x, y$ bitmasks, $x \& y=y$ and $y$ a valid combination


## G - Smoking gun

- Calculate $t_{i j}$, the minimal time difference between $i$ shooting and $j$ shooting: $t_{i} \leq t_{j}+t_{i j}$


## G - Smoking gun

- Calculate $t_{i j}$, the minimal time difference between $i$
shooting and $j$ shooting: $t_{i} \leq t_{j}+t_{i j}$
- "k heard i shoot before $j$ " leads to $t_{i j}=d_{k j}-d_{k i}$


## G - Smoking gun

- Calculate $t_{i j}$, the minimal time difference between $i$
shooting and $j$ shooting: $t_{i} \leq t_{j}+t_{i j}$
- "k heard i shoot before $j$ " leads to $t_{i j}=d_{k j}-d_{k i}$
- Use Floyd-Warshall to draw inferences: $t_{i j} \leq t_{i k}+t_{k j}$


## G - Smoking gun

- Calculate $t_{i j}$, the minimal time difference between $i$
shooting and $j$ shooting: $t_{i} \leq t_{j}+t_{i j}$
- "k heard i shoot before $j$ " leads to $t_{i j}=d_{k j}-d_{k i}$
- Use Floyd-Warshall to draw inferences: $t_{i j} \leq t_{i k}+t_{k j}$
- This is all information that needs to be obtained

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem I
Problem F
The end

## G - Smoking gun

- Calculate $t_{i j}$, the minimal time difference between $i$
shooting and $j$ shooting: $t_{i} \leq t_{j}+t_{i j}$
- "k heard i shoot before $j$ " leads to $t_{i j}=d_{k j}-d_{k i}$
- Use Floyd-Warshall to draw inferences: $t_{i j} \leq t_{i k}+t_{k j}$
- This is all information that needs to be obtained
- If $t_{i i}<0$, it is impossible


## G - Smoking gun

- Calculate $t_{i j}$, the minimal time difference between $i$ shooting and $j$ shooting: $t_{i} \leq t_{j}+t_{i j}$
- "k heard i shoot before $j$ " leads to $t_{i j}=d_{k j}-d_{k i}$
- Use Floyd-Warshall to draw inferences: $t_{i j} \leq t_{i k}+t_{k j}$
- This is all information that needs to be obtained
- If $t_{i i}<0$, it is impossible
- Otherwise, find $i$ such that $t_{i j}<0$ for all $j$


## G - Smoking gun

- Calculate $t_{i j}$, the minimal time difference between $i$
shooting and $j$ shooting: $t_{i} \leq t_{j}+t_{i j}$
- "k heard i shoot before $j$ " leads to $t_{i j}=d_{k j}-d_{k i}$
- Use Floyd-Warshall to draw inferences: $t_{i j} \leq t_{i k}+t_{k j}$
- This is all information that needs to be obtained
- If $t_{i i}<0$, it is impossible
- Otherwise, find $i$ such that $t_{i j}<0$ for all $j$
- If multiple, it is unknown

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F

## G - Smoking gun

- Calculate $t_{i j}$, the minimal time difference between $i$
shooting and $j$ shooting: $t_{i} \leq t_{j}+t_{i j}$
- "k heard i shoot before $j$ " leads to $t_{i j}=d_{k j}-d_{k i}$
- Use Floyd-Warshall to draw inferences: $t_{i j} \leq t_{i k}+t_{k j}$
- This is all information that needs to be obtained
- If $t_{i i}<0$, it is impossible
- Otherwise, find $i$ such that $t_{i j}<0$ for all $j$
- If multiple, it is unknown
- Otherwise, this gives the unique solution

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F

## I - Tracking RFIDs

- To determine whether a sensor can see product, calculate the distance between them


## I - Tracking RFIDs

- To determine whether a sensor can see product, calculate the distance between them
- Subtract the number of intersecting walls and compare this with $r$


## I - Tracking RFIDs

- To determine whether a sensor can see product, calculate the distance between them
- Subtract the number of intersecting walls and compare this with $r$
- Problem: you cannot do this for all pairs of sensors and products

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## I - Tracking RFIDs

- To determine whether a sensor can see product, calculate the distance between them
- Subtract the number of intersecting walls and compare this with $r$
- Problem: you cannot do this for all pairs of sensors and products
- Note: since sensors are separated by at least $r$, only a few sensors can possibly be in range of a product

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## I - Tracking RFIDs

- To determine whether a sensor can see product, calculate the distance between them
- Subtract the number of intersecting walls and compare this with $r$
- Problem: you cannot do this for all pairs of sensors and products
- Note: since sensors are separated by at least $r$, only a few sensors can possibly be in range of a product
- One possible solution: store all sensors in a search tree (e.g. C++'s set or Java's TreeSet)

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## I - Tracking RFIDs

- To determine whether a sensor can see product, calculate the distance between them
- Subtract the number of intersecting walls and compare this with $r$
- Problem: you cannot do this for all pairs of sensors and products
- Note: since sensors are separated by at least $r$, only a few sensors can possibly be in range of a product
- One possible solution: store all sensors in a search tree (e.g. C++'s set or Java's TreeSet)
- For each product, look if a sensor at $(x+\delta x, y+\delta y)$ exists for $-r \leq \delta x, \delta y \leq r$

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## I - Tracking RFIDs

- To determine whether a sensor can see product, calculate the distance between them
- Subtract the number of intersecting walls and compare this with $r$
- Problem: you cannot do this for all pairs of sensors and products
- Note: since sensors are separated by at least $r$, only a few sensors can possibly be in range of a product
- One possible solution: store all sensors in a search tree (e.g. C++'s set or Java's TreeSet)
- For each product, look if a sensor at $(x+\delta x, y+\delta y)$ exists for $-r \leq \delta x, \delta y \leq r$
- More difficult solutions using binning, quad trees are also possible


## I - Tracking RFIDs (test case)

- A maximum of 6 sensors can be in range of a product:


Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## D - Piece it together (1)

- Solution: not matching/max.flow


## D - Piece it together (1)

- Solution: not matching/max.flow
- Solution: not backtrack


## D - Piece it together (1)

- Solution: not matching/max.flow
- Solution: not backtrack
- Solution: 2SAT


## $D$ - Piece it together (1)

- Solution: not matching/max.flow
- Solution: not backtrack
- Solution: 2SAT
- First, check white $=2 \times$ black


## $D$ - Piece it together (1)

- Solution: not matching/max.flow
- Solution: not backtrack
- Solution: 2SAT
- First, check white $=2 \times$ black
- Boolean variables: $x$ is part of the same puzzle piece as $y$ ( $x, y$ adjacent)


## $D$ - Piece it together (1)

- Solution: not matching/max.flow
- Solution: not backtrack
- Solution: 2SAT
- First, check white $=2 \times$ black
- Boolean variables: $x$ is part of the same puzzle piece as $y$ ( $x, y$ adjacent)
- Black square should be connected to its left xor right white neighbor: $(A \mid B) \&(!A \mid!B)$

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## $D$ - Piece it together (1)

- Solution: not matching/max.flow
- Solution: not backtrack
- Solution: 2SAT
- First, check white $=2 \times$ black
- Boolean variables: $x$ is part of the same puzzle piece as $y$ ( $x, y$ adjacent)
- Black square should be connected to its left xor right white neighbor: $(A \mid B) \&(!A \mid!B)$
- Identically, it should be connected to its upper or lower neighbor

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem 1
Problem D
Problem J
Problem F

## $D$ - Piece it together (1)

- Solution: not matching/max.flow
- Solution: not backtrack
- Solution: 2SAT
- First, check white $=2 \times$ black
- Boolean variables: $x$ is part of the same puzzle piece as $y$ ( $x, y$ adjacent)
- Black square should be connected to its left xor right white neighbor: $(A \mid B) \&(!A \mid!B)$
- Identically, it should be connected to its upper or lower neighbor
- White square should be connected to at most one black square: $(!A \mid!B) \&(!A \mid!C) \&(!B \mid!C)$ etc.


## $D$ - Piece it together (1)

- Solution: not matching/max.flow
- Solution: not backtrack
- Solution: 2SAT
- First, check white $=2 \times$ black
- Boolean variables: $x$ is part of the same puzzle piece as $y$ ( $x, y$ adjacent)
- Black square should be connected to its left xor right white neighbor: $(A \mid B) \&(!A \mid!B)$
- Identically, it should be connected to its upper or lower neighbor
- White square should be connected to at most one black square: $(!A \mid!B) \&(!A \mid!C) \&(!B \mid!C)$ etc.
- Now you can use a standard 2SAT solution


## D - Piece it together (2)

- But this problem has way more structure!


## D - Piece it together (2)

- But this problem has way more structure!
- You can divide the problem in four subproblems


## D - Piece it together (2)

- But this problem has way more structure!
- You can divide the problem in four subproblems
- Take white squares at $x=a \bmod 2$ and $y=b \bmod 2$ ( $a, b=0,1$ ) and adjacent black squares


## D - Piece it together (2)

- But this problem has way more structure!
- You can divide the problem in four subproblems
- Take white squares at $x=a \bmod 2$ and $y=b \bmod 2$ ( $a, b=0,1$ ) and adjacent black squares
- Each connected component of these subproblems should have white = black


## D - Piece it together (2)

- But this problem has way more structure!
- You can divide the problem in four subproblems
- Take white squares at $x=a \bmod 2$ and $y=b \bmod 2$ ( $a, b=0,1$ ) and adjacent black squares
- Each connected component of these subproblems should have white = black
- If so, it's possible to solve the puzzle, otherwise, it's not


## D - Piece it together (source code)

```
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int Y,X,W,B,py,px;
vector<string> s;
vector<vector<bool> > u;
void go (int y, int x) {
    if (y<0||y>=Y||x<0||x>=X) return;
    if (u[y][x]) return;
    u[y][x]=true;
    if (s[y][x]=='.') return;
    if (s[y][x]=='W' && (y+py)%2+(x+px)%2!=0)
        return;
    if (s[y][x]=='B' && (y+py)%2+(x+px)%2!=1)
        return;
    if (s[y] [x]=='W') W++;
    if (s[y][x]=='B') B++;
    go(y-1,x);
    go (y+1,x);
    go(y,x-1);
    go(y,x+1);
}
Solutions
```

int main () {

```
int main () {
```

int main () {
int runs;
int runs;
int runs;
cin >> runs;
cin >> runs;
cin >> runs;
while (runs--) {
while (runs--) {
while (runs--) {
cin >> Y >> X;
cin >> Y >> X;
cin >> Y >> X;
s = vector<string>(Y);
s = vector<string>(Y);
s = vector<string>(Y);
for (int y=0; y<Y; y++)
for (int y=0; y<Y; y++)
for (int y=0; y<Y; y++)
cin >> s[y];
cin >> s[y];
cin >> s[y];
bool ok=true;
bool ok=true;
bool ok=true;
for (px=0; px<2; px++)
for (px=0; px<2; px++)
for (px=0; px<2; px++)
for (py=0; py<2; py++) {
for (py=0; py<2; py++) {
for (py=0; py<2; py++) {
u = vector<vector<bool> >
u = vector<vector<bool> >
u = vector<vector<bool> >
(Y,vector<bool>(X, false));
(Y,vector<bool>(X, false));
(Y,vector<bool>(X, false));
for (int y=0; y<Y; y++)
for (int y=0; y<Y; y++)
for (int y=0; y<Y; y++)
for (int x=0; x<X; x++) {
for (int x=0; x<X; x++) {
for (int x=0; x<X; x++) {
W=B=0;
W=B=0;
W=B=0;
go(y,x);
go(y,x);
go(y,x);
if (W!=B) ok=false;
if (W!=B) ok=false;
if (W!=B) ok=false;
}
}
}
}
}
}
cout << (ok ? "YES" : "NO") << endl;
cout << (ok ? "YES" : "NO") << endl;
cout << (ok ? "YES" : "NO") << endl;
}
}
}
return 0;
return 0;
return 0;
}

```
```

}

```
```

}

```
```


## J - Train delays (1)

- Calculate best expected time best $[x, t]$ for each station $x$ and time $t=0 \ldots 59$


## J - Train delays (1)

- Calculate best expected time best $[x, t]$ for each station $x$ and time $t=0 \ldots 59$
- Easiest: use Bellman-Ford algorithm for shortest paths


## J - Train delays (1)

- Calculate best expected time best $[x, t]$ for each station $x$ and time $t=0 \ldots 59$
- Easiest: use Bellman-Ford algorithm for shortest paths
- Initially, best $[e n d, t]=0$ and best $[$ other, $t]=\infty$


## J - Train delays (1)

- Calculate best expected time best $[x, t]$ for each station $x$ and time $t=0 \ldots 59$
- Easiest: use Bellman-Ford algorithm for shortest paths
- Initially, best $[e n d, t]=0$ and best $[$ other, $t]=\infty$
- Loop over all trains, calculate potential new expected time best[from, depart]


## J - Train delays (1)

- Calculate best expected time best $[x, t]$ for each station $x$
and time $t=0 \ldots 59$
- Easiest: use Bellman-Ford algorithm for shortest paths
- Initially, best $[e n d, t]=0$ and best $[$ other, $t]=\infty$
- Loop over all trains, calculate potential new expected time best[from, depart]
- If it's better, update best[from, depart] and best[from, $t$ ] for all $t$


## J - Train delays (1)

- Calculate best expected time best $[x, t]$ for each station $x$
and time $t=0 \ldots 59$
- Easiest: use Bellman-Ford algorithm for shortest paths
- Initially, best $[$ end, $t]=0$ and best $[$ other, $t]=\infty$
- Loop over all trains, calculate potential new expected time best[from, depart]
- If it's better, update best[from, depart] and best[from, $t$ ] for all $t$
- Repeat until nothing changes anymore


## J - Train delays (1)

- Calculate best expected time best $[x, t]$ for each station $x$
and time $t=0 \ldots 59$
- Easiest: use Bellman-Ford algorithm for shortest paths
- Initially, best $[e n d, t]=0$ and best $[$ other, $t]=\infty$
- Loop over all trains, calculate potential new expected time best[from, depart]
- If it's better, update best[from, depart] and best[from, $t$ ] for all $t$
- Repeat until nothing changes anymore
- Use epsilon when comparing doubles!

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem 1
Problem D
Problem J
Problem F

## J - Train delays (2)

- Calculate best expected time best $[x, t]$ for each station $x$ and time $t=0 \ldots 59$


## J - Train delays (2)

- Calculate best expected time best $[x, t]$ for each station $x$ and time $t=0 \ldots 59$
- Harder: use Dijkstra's algorithm for shortest paths


## J - Train delays (2)

- Calculate best expected time best $[x, t]$ for each station $x$ and time $t=0 \ldots 59$
- Harder: use Dijkstra's algorithm for shortest paths
- Issue: sometimes you have to update the same state multiple times


## J - Train delays (2)

- Calculate best expected time best $[x, t]$ for each station $x$ and time $t=0 \ldots 59$
- Harder: use Dijkstra's algorithm for shortest paths
- Issue: sometimes you have to update the same state multiple times
- At most 60 times though


## F - Pool construction

- Solution: maximum flow

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G

Problem I
Problem D
Problem J
Problem F
The end

## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares


## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares
- Construct the following flow graph:

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares
- Construct the following flow graph:
- Vertices: source, sink, every square

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares
- Construct the following flow graph:
- Vertices: source, sink, every square
- Edge from source to boundary square with capacity $\infty$

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares
- Construct the following flow graph:
- Vertices: source, sink, every square
- Edge from source to boundary square with capacity $\infty$
- Edge from source to non-boundary grass square with capacity $D$ (dig)


## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares
- Construct the following flow graph:
- Vertices: source, sink, every square
- Edge from source to boundary square with capacity $\infty$
- Edge from source to non-boundary grass square with capacity $D$ (dig)
- Edge from non-boundary hole square to sink with capacity $F$ (fill)

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares
- Construct the following flow graph:
- Vertices: source, sink, every square
- Edge from source to boundary square with capacity $\infty$
- Edge from source to non-boundary grass square with capacity $D$ (dig)
- Edge from non-boundary hole square to sink with capacity $F$ (fill)
- Edges between connected squares with capacity $B$ (boundary)

Statistics
Problem E
Problem B
Problem C
Problem A

Problem H
Problem G
Problem

Problem D
Problem J
Problem F
The end

## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares
- Construct the following flow graph:
- Vertices: source, sink, every square
- Edge from source to boundary square with capacity $\infty$
- Edge from source to non-boundary grass square with capacity $D$ (dig)
- Edge from non-boundary hole square to sink with capacity $F$ (fill)
- Edges between connected squares with capacity $B$ (boundary)
- You can show that the cost of a cut of this graph equals the cost of splitting it into grass and holes along this cut


## F - Pool construction

- Solution: maximum flow
- First, fill all boundary squares
- Construct the following flow graph:
- Vertices: source, sink, every square
- Edge from source to boundary square with capacity $\infty$
- Edge from source to non-boundary grass square with capacity $D$ (dig)
- Edge from non-boundary hole square to sink with capacity $F$ (fill)
- Edges between connected squares with capacity $B$ (boundary)

Statistics
Problem E
Problem B
Problem C
Problem A
Problem H
Problem G
Problem I
Problem D
Problem J
Problem F
The end

- So find the minimum cut, i.e., the maximum flow


## The end

## The end

